3.9.2 \(\int (d+e x) (d^2-e^2 x^2)^{7/2} \, dx\) [802]

Optimal. Leaf size=148 \[ \frac {35}{128} d^7 x \sqrt {d^2-e^2 x^2}+\frac {35}{192} d^5 x \left (d^2-e^2 x^2\right )^{3/2}+\frac {7}{48} d^3 x \left (d^2-e^2 x^2\right )^{5/2}+\frac {1}{8} d x \left (d^2-e^2 x^2\right )^{7/2}-\frac {\left (d^2-e^2 x^2\right )^{9/2}}{9 e}+\frac {35 d^9 \tan ^{-1}\left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )}{128 e} \]

[Out]

35/192*d^5*x*(-e^2*x^2+d^2)^(3/2)+7/48*d^3*x*(-e^2*x^2+d^2)^(5/2)+1/8*d*x*(-e^2*x^2+d^2)^(7/2)-1/9*(-e^2*x^2+d
^2)^(9/2)/e+35/128*d^9*arctan(e*x/(-e^2*x^2+d^2)^(1/2))/e+35/128*d^7*x*(-e^2*x^2+d^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 148, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 4, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {655, 201, 223, 209} \begin {gather*} \frac {35 d^9 \text {ArcTan}\left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )}{128 e}+\frac {1}{8} d x \left (d^2-e^2 x^2\right )^{7/2}-\frac {\left (d^2-e^2 x^2\right )^{9/2}}{9 e}+\frac {35}{128} d^7 x \sqrt {d^2-e^2 x^2}+\frac {35}{192} d^5 x \left (d^2-e^2 x^2\right )^{3/2}+\frac {7}{48} d^3 x \left (d^2-e^2 x^2\right )^{5/2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x)*(d^2 - e^2*x^2)^(7/2),x]

[Out]

(35*d^7*x*Sqrt[d^2 - e^2*x^2])/128 + (35*d^5*x*(d^2 - e^2*x^2)^(3/2))/192 + (7*d^3*x*(d^2 - e^2*x^2)^(5/2))/48
 + (d*x*(d^2 - e^2*x^2)^(7/2))/8 - (d^2 - e^2*x^2)^(9/2)/(9*e) + (35*d^9*ArcTan[(e*x)/Sqrt[d^2 - e^2*x^2]])/(1
28*e)

Rule 201

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x*((a + b*x^n)^p/(n*p + 1)), x] + Dist[a*n*(p/(n*p + 1)),
 Int[(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || (EqQ[n, 2
] && IntegerQ[4*p]) || (EqQ[n, 2] && IntegerQ[3*p]) || LtQ[Denominator[p + 1/n], Denominator[p]])

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 655

Int[((d_) + (e_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[e*((a + c*x^2)^(p + 1)/(2*c*(p + 1))),
x] + Dist[d, Int[(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, p}, x] && NeQ[p, -1]

Rubi steps

\begin {align*} \int (d+e x) \left (d^2-e^2 x^2\right )^{7/2} \, dx &=-\frac {\left (d^2-e^2 x^2\right )^{9/2}}{9 e}+d \int \left (d^2-e^2 x^2\right )^{7/2} \, dx\\ &=\frac {1}{8} d x \left (d^2-e^2 x^2\right )^{7/2}-\frac {\left (d^2-e^2 x^2\right )^{9/2}}{9 e}+\frac {1}{8} \left (7 d^3\right ) \int \left (d^2-e^2 x^2\right )^{5/2} \, dx\\ &=\frac {7}{48} d^3 x \left (d^2-e^2 x^2\right )^{5/2}+\frac {1}{8} d x \left (d^2-e^2 x^2\right )^{7/2}-\frac {\left (d^2-e^2 x^2\right )^{9/2}}{9 e}+\frac {1}{48} \left (35 d^5\right ) \int \left (d^2-e^2 x^2\right )^{3/2} \, dx\\ &=\frac {35}{192} d^5 x \left (d^2-e^2 x^2\right )^{3/2}+\frac {7}{48} d^3 x \left (d^2-e^2 x^2\right )^{5/2}+\frac {1}{8} d x \left (d^2-e^2 x^2\right )^{7/2}-\frac {\left (d^2-e^2 x^2\right )^{9/2}}{9 e}+\frac {1}{64} \left (35 d^7\right ) \int \sqrt {d^2-e^2 x^2} \, dx\\ &=\frac {35}{128} d^7 x \sqrt {d^2-e^2 x^2}+\frac {35}{192} d^5 x \left (d^2-e^2 x^2\right )^{3/2}+\frac {7}{48} d^3 x \left (d^2-e^2 x^2\right )^{5/2}+\frac {1}{8} d x \left (d^2-e^2 x^2\right )^{7/2}-\frac {\left (d^2-e^2 x^2\right )^{9/2}}{9 e}+\frac {1}{128} \left (35 d^9\right ) \int \frac {1}{\sqrt {d^2-e^2 x^2}} \, dx\\ &=\frac {35}{128} d^7 x \sqrt {d^2-e^2 x^2}+\frac {35}{192} d^5 x \left (d^2-e^2 x^2\right )^{3/2}+\frac {7}{48} d^3 x \left (d^2-e^2 x^2\right )^{5/2}+\frac {1}{8} d x \left (d^2-e^2 x^2\right )^{7/2}-\frac {\left (d^2-e^2 x^2\right )^{9/2}}{9 e}+\frac {1}{128} \left (35 d^9\right ) \text {Subst}\left (\int \frac {1}{1+e^2 x^2} \, dx,x,\frac {x}{\sqrt {d^2-e^2 x^2}}\right )\\ &=\frac {35}{128} d^7 x \sqrt {d^2-e^2 x^2}+\frac {35}{192} d^5 x \left (d^2-e^2 x^2\right )^{3/2}+\frac {7}{48} d^3 x \left (d^2-e^2 x^2\right )^{5/2}+\frac {1}{8} d x \left (d^2-e^2 x^2\right )^{7/2}-\frac {\left (d^2-e^2 x^2\right )^{9/2}}{9 e}+\frac {35 d^9 \tan ^{-1}\left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )}{128 e}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.35, size = 155, normalized size = 1.05 \begin {gather*} \frac {\sqrt {d^2-e^2 x^2} \left (-128 d^8+837 d^7 e x+512 d^6 e^2 x^2-978 d^5 e^3 x^3-768 d^4 e^4 x^4+600 d^3 e^5 x^5+512 d^2 e^6 x^6-144 d e^7 x^7-128 e^8 x^8\right )}{1152 e}-\frac {35 d^9 \log \left (-\sqrt {-e^2} x+\sqrt {d^2-e^2 x^2}\right )}{128 \sqrt {-e^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)*(d^2 - e^2*x^2)^(7/2),x]

[Out]

(Sqrt[d^2 - e^2*x^2]*(-128*d^8 + 837*d^7*e*x + 512*d^6*e^2*x^2 - 978*d^5*e^3*x^3 - 768*d^4*e^4*x^4 + 600*d^3*e
^5*x^5 + 512*d^2*e^6*x^6 - 144*d*e^7*x^7 - 128*e^8*x^8))/(1152*e) - (35*d^9*Log[-(Sqrt[-e^2]*x) + Sqrt[d^2 - e
^2*x^2]])/(128*Sqrt[-e^2])

________________________________________________________________________________________

Maple [A]
time = 0.44, size = 142, normalized size = 0.96

method result size
risch \(-\frac {\left (128 e^{8} x^{8}+144 d \,e^{7} x^{7}-512 d^{2} e^{6} x^{6}-600 d^{3} e^{5} x^{5}+768 d^{4} e^{4} x^{4}+978 d^{5} e^{3} x^{3}-512 d^{6} e^{2} x^{2}-837 d^{7} e x +128 d^{8}\right ) \sqrt {-e^{2} x^{2}+d^{2}}}{1152 e}+\frac {35 d^{9} \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-e^{2} x^{2}+d^{2}}}\right )}{128 \sqrt {e^{2}}}\) \(138\)
default \(-\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {9}{2}}}{9 e}+d \left (\frac {x \left (-e^{2} x^{2}+d^{2}\right )^{\frac {7}{2}}}{8}+\frac {7 d^{2} \left (\frac {x \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}{6}+\frac {5 d^{2} \left (\frac {x \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}{4}+\frac {3 d^{2} \left (\frac {x \sqrt {-e^{2} x^{2}+d^{2}}}{2}+\frac {d^{2} \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-e^{2} x^{2}+d^{2}}}\right )}{2 \sqrt {e^{2}}}\right )}{4}\right )}{6}\right )}{8}\right )\) \(142\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)*(-e^2*x^2+d^2)^(7/2),x,method=_RETURNVERBOSE)

[Out]

-1/9*(-e^2*x^2+d^2)^(9/2)/e+d*(1/8*x*(-e^2*x^2+d^2)^(7/2)+7/8*d^2*(1/6*x*(-e^2*x^2+d^2)^(5/2)+5/6*d^2*(1/4*x*(
-e^2*x^2+d^2)^(3/2)+3/4*d^2*(1/2*x*(-e^2*x^2+d^2)^(1/2)+1/2*d^2/(e^2)^(1/2)*arctan((e^2)^(1/2)*x/(-e^2*x^2+d^2
)^(1/2))))))

________________________________________________________________________________________

Maxima [A]
time = 0.49, size = 107, normalized size = 0.72 \begin {gather*} \frac {35}{128} \, d^{9} \arcsin \left (\frac {x e}{d}\right ) e^{\left (-1\right )} + \frac {35}{128} \, \sqrt {-x^{2} e^{2} + d^{2}} d^{7} x + \frac {35}{192} \, {\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {3}{2}} d^{5} x + \frac {7}{48} \, {\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {5}{2}} d^{3} x + \frac {1}{8} \, {\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {7}{2}} d x - \frac {1}{9} \, {\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {9}{2}} e^{\left (-1\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)*(-e^2*x^2+d^2)^(7/2),x, algorithm="maxima")

[Out]

35/128*d^9*arcsin(x*e/d)*e^(-1) + 35/128*sqrt(-x^2*e^2 + d^2)*d^7*x + 35/192*(-x^2*e^2 + d^2)^(3/2)*d^5*x + 7/
48*(-x^2*e^2 + d^2)^(5/2)*d^3*x + 1/8*(-x^2*e^2 + d^2)^(7/2)*d*x - 1/9*(-x^2*e^2 + d^2)^(9/2)*e^(-1)

________________________________________________________________________________________

Fricas [A]
time = 3.01, size = 128, normalized size = 0.86 \begin {gather*} -\frac {1}{1152} \, {\left (630 \, d^{9} \arctan \left (-\frac {{\left (d - \sqrt {-x^{2} e^{2} + d^{2}}\right )} e^{\left (-1\right )}}{x}\right ) + {\left (128 \, x^{8} e^{8} + 144 \, d x^{7} e^{7} - 512 \, d^{2} x^{6} e^{6} - 600 \, d^{3} x^{5} e^{5} + 768 \, d^{4} x^{4} e^{4} + 978 \, d^{5} x^{3} e^{3} - 512 \, d^{6} x^{2} e^{2} - 837 \, d^{7} x e + 128 \, d^{8}\right )} \sqrt {-x^{2} e^{2} + d^{2}}\right )} e^{\left (-1\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)*(-e^2*x^2+d^2)^(7/2),x, algorithm="fricas")

[Out]

-1/1152*(630*d^9*arctan(-(d - sqrt(-x^2*e^2 + d^2))*e^(-1)/x) + (128*x^8*e^8 + 144*d*x^7*e^7 - 512*d^2*x^6*e^6
 - 600*d^3*x^5*e^5 + 768*d^4*x^4*e^4 + 978*d^5*x^3*e^3 - 512*d^6*x^2*e^2 - 837*d^7*x*e + 128*d^8)*sqrt(-x^2*e^
2 + d^2))*e^(-1)

________________________________________________________________________________________

Sympy [C] Result contains complex when optimal does not.
time = 30.20, size = 1284, normalized size = 8.68 \begin {gather*} d^{7} \left (\begin {cases} - \frac {i d^{2} \operatorname {acosh}{\left (\frac {e x}{d} \right )}}{2 e} - \frac {i d x}{2 \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}} + \frac {i e^{2} x^{3}}{2 d \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}} & \text {for}\: \left |{\frac {e^{2} x^{2}}{d^{2}}}\right | > 1 \\\frac {d^{2} \operatorname {asin}{\left (\frac {e x}{d} \right )}}{2 e} + \frac {d x \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}}{2} & \text {otherwise} \end {cases}\right ) + d^{6} e \left (\begin {cases} \frac {x^{2} \sqrt {d^{2}}}{2} & \text {for}\: e^{2} = 0 \\- \frac {\left (d^{2} - e^{2} x^{2}\right )^{\frac {3}{2}}}{3 e^{2}} & \text {otherwise} \end {cases}\right ) - 3 d^{5} e^{2} \left (\begin {cases} - \frac {i d^{4} \operatorname {acosh}{\left (\frac {e x}{d} \right )}}{8 e^{3}} + \frac {i d^{3} x}{8 e^{2} \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}} - \frac {3 i d x^{3}}{8 \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}} + \frac {i e^{2} x^{5}}{4 d \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}} & \text {for}\: \left |{\frac {e^{2} x^{2}}{d^{2}}}\right | > 1 \\\frac {d^{4} \operatorname {asin}{\left (\frac {e x}{d} \right )}}{8 e^{3}} - \frac {d^{3} x}{8 e^{2} \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}} + \frac {3 d x^{3}}{8 \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}} - \frac {e^{2} x^{5}}{4 d \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}} & \text {otherwise} \end {cases}\right ) - 3 d^{4} e^{3} \left (\begin {cases} - \frac {2 d^{4} \sqrt {d^{2} - e^{2} x^{2}}}{15 e^{4}} - \frac {d^{2} x^{2} \sqrt {d^{2} - e^{2} x^{2}}}{15 e^{2}} + \frac {x^{4} \sqrt {d^{2} - e^{2} x^{2}}}{5} & \text {for}\: e \neq 0 \\\frac {x^{4} \sqrt {d^{2}}}{4} & \text {otherwise} \end {cases}\right ) + 3 d^{3} e^{4} \left (\begin {cases} - \frac {i d^{6} \operatorname {acosh}{\left (\frac {e x}{d} \right )}}{16 e^{5}} + \frac {i d^{5} x}{16 e^{4} \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}} - \frac {i d^{3} x^{3}}{48 e^{2} \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}} - \frac {5 i d x^{5}}{24 \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}} + \frac {i e^{2} x^{7}}{6 d \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}} & \text {for}\: \left |{\frac {e^{2} x^{2}}{d^{2}}}\right | > 1 \\\frac {d^{6} \operatorname {asin}{\left (\frac {e x}{d} \right )}}{16 e^{5}} - \frac {d^{5} x}{16 e^{4} \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}} + \frac {d^{3} x^{3}}{48 e^{2} \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}} + \frac {5 d x^{5}}{24 \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}} - \frac {e^{2} x^{7}}{6 d \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}} & \text {otherwise} \end {cases}\right ) + 3 d^{2} e^{5} \left (\begin {cases} - \frac {8 d^{6} \sqrt {d^{2} - e^{2} x^{2}}}{105 e^{6}} - \frac {4 d^{4} x^{2} \sqrt {d^{2} - e^{2} x^{2}}}{105 e^{4}} - \frac {d^{2} x^{4} \sqrt {d^{2} - e^{2} x^{2}}}{35 e^{2}} + \frac {x^{6} \sqrt {d^{2} - e^{2} x^{2}}}{7} & \text {for}\: e \neq 0 \\\frac {x^{6} \sqrt {d^{2}}}{6} & \text {otherwise} \end {cases}\right ) - d e^{6} \left (\begin {cases} - \frac {5 i d^{8} \operatorname {acosh}{\left (\frac {e x}{d} \right )}}{128 e^{7}} + \frac {5 i d^{7} x}{128 e^{6} \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}} - \frac {5 i d^{5} x^{3}}{384 e^{4} \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}} - \frac {i d^{3} x^{5}}{192 e^{2} \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}} - \frac {7 i d x^{7}}{48 \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}} + \frac {i e^{2} x^{9}}{8 d \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}} & \text {for}\: \left |{\frac {e^{2} x^{2}}{d^{2}}}\right | > 1 \\\frac {5 d^{8} \operatorname {asin}{\left (\frac {e x}{d} \right )}}{128 e^{7}} - \frac {5 d^{7} x}{128 e^{6} \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}} + \frac {5 d^{5} x^{3}}{384 e^{4} \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}} + \frac {d^{3} x^{5}}{192 e^{2} \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}} + \frac {7 d x^{7}}{48 \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}} - \frac {e^{2} x^{9}}{8 d \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}} & \text {otherwise} \end {cases}\right ) - e^{7} \left (\begin {cases} - \frac {16 d^{8} \sqrt {d^{2} - e^{2} x^{2}}}{315 e^{8}} - \frac {8 d^{6} x^{2} \sqrt {d^{2} - e^{2} x^{2}}}{315 e^{6}} - \frac {2 d^{4} x^{4} \sqrt {d^{2} - e^{2} x^{2}}}{105 e^{4}} - \frac {d^{2} x^{6} \sqrt {d^{2} - e^{2} x^{2}}}{63 e^{2}} + \frac {x^{8} \sqrt {d^{2} - e^{2} x^{2}}}{9} & \text {for}\: e \neq 0 \\\frac {x^{8} \sqrt {d^{2}}}{8} & \text {otherwise} \end {cases}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)*(-e**2*x**2+d**2)**(7/2),x)

[Out]

d**7*Piecewise((-I*d**2*acosh(e*x/d)/(2*e) - I*d*x/(2*sqrt(-1 + e**2*x**2/d**2)) + I*e**2*x**3/(2*d*sqrt(-1 +
e**2*x**2/d**2)), Abs(e**2*x**2/d**2) > 1), (d**2*asin(e*x/d)/(2*e) + d*x*sqrt(1 - e**2*x**2/d**2)/2, True)) +
 d**6*e*Piecewise((x**2*sqrt(d**2)/2, Eq(e**2, 0)), (-(d**2 - e**2*x**2)**(3/2)/(3*e**2), True)) - 3*d**5*e**2
*Piecewise((-I*d**4*acosh(e*x/d)/(8*e**3) + I*d**3*x/(8*e**2*sqrt(-1 + e**2*x**2/d**2)) - 3*I*d*x**3/(8*sqrt(-
1 + e**2*x**2/d**2)) + I*e**2*x**5/(4*d*sqrt(-1 + e**2*x**2/d**2)), Abs(e**2*x**2/d**2) > 1), (d**4*asin(e*x/d
)/(8*e**3) - d**3*x/(8*e**2*sqrt(1 - e**2*x**2/d**2)) + 3*d*x**3/(8*sqrt(1 - e**2*x**2/d**2)) - e**2*x**5/(4*d
*sqrt(1 - e**2*x**2/d**2)), True)) - 3*d**4*e**3*Piecewise((-2*d**4*sqrt(d**2 - e**2*x**2)/(15*e**4) - d**2*x*
*2*sqrt(d**2 - e**2*x**2)/(15*e**2) + x**4*sqrt(d**2 - e**2*x**2)/5, Ne(e, 0)), (x**4*sqrt(d**2)/4, True)) + 3
*d**3*e**4*Piecewise((-I*d**6*acosh(e*x/d)/(16*e**5) + I*d**5*x/(16*e**4*sqrt(-1 + e**2*x**2/d**2)) - I*d**3*x
**3/(48*e**2*sqrt(-1 + e**2*x**2/d**2)) - 5*I*d*x**5/(24*sqrt(-1 + e**2*x**2/d**2)) + I*e**2*x**7/(6*d*sqrt(-1
 + e**2*x**2/d**2)), Abs(e**2*x**2/d**2) > 1), (d**6*asin(e*x/d)/(16*e**5) - d**5*x/(16*e**4*sqrt(1 - e**2*x**
2/d**2)) + d**3*x**3/(48*e**2*sqrt(1 - e**2*x**2/d**2)) + 5*d*x**5/(24*sqrt(1 - e**2*x**2/d**2)) - e**2*x**7/(
6*d*sqrt(1 - e**2*x**2/d**2)), True)) + 3*d**2*e**5*Piecewise((-8*d**6*sqrt(d**2 - e**2*x**2)/(105*e**6) - 4*d
**4*x**2*sqrt(d**2 - e**2*x**2)/(105*e**4) - d**2*x**4*sqrt(d**2 - e**2*x**2)/(35*e**2) + x**6*sqrt(d**2 - e**
2*x**2)/7, Ne(e, 0)), (x**6*sqrt(d**2)/6, True)) - d*e**6*Piecewise((-5*I*d**8*acosh(e*x/d)/(128*e**7) + 5*I*d
**7*x/(128*e**6*sqrt(-1 + e**2*x**2/d**2)) - 5*I*d**5*x**3/(384*e**4*sqrt(-1 + e**2*x**2/d**2)) - I*d**3*x**5/
(192*e**2*sqrt(-1 + e**2*x**2/d**2)) - 7*I*d*x**7/(48*sqrt(-1 + e**2*x**2/d**2)) + I*e**2*x**9/(8*d*sqrt(-1 +
e**2*x**2/d**2)), Abs(e**2*x**2/d**2) > 1), (5*d**8*asin(e*x/d)/(128*e**7) - 5*d**7*x/(128*e**6*sqrt(1 - e**2*
x**2/d**2)) + 5*d**5*x**3/(384*e**4*sqrt(1 - e**2*x**2/d**2)) + d**3*x**5/(192*e**2*sqrt(1 - e**2*x**2/d**2))
+ 7*d*x**7/(48*sqrt(1 - e**2*x**2/d**2)) - e**2*x**9/(8*d*sqrt(1 - e**2*x**2/d**2)), True)) - e**7*Piecewise((
-16*d**8*sqrt(d**2 - e**2*x**2)/(315*e**8) - 8*d**6*x**2*sqrt(d**2 - e**2*x**2)/(315*e**6) - 2*d**4*x**4*sqrt(
d**2 - e**2*x**2)/(105*e**4) - d**2*x**6*sqrt(d**2 - e**2*x**2)/(63*e**2) + x**8*sqrt(d**2 - e**2*x**2)/9, Ne(
e, 0)), (x**8*sqrt(d**2)/8, True))

________________________________________________________________________________________

Giac [A]
time = 0.85, size = 119, normalized size = 0.80 \begin {gather*} \frac {35}{128} \, d^{9} \arcsin \left (\frac {x e}{d}\right ) e^{\left (-1\right )} \mathrm {sgn}\left (d\right ) - \frac {1}{1152} \, {\left (128 \, d^{8} e^{\left (-1\right )} - {\left (837 \, d^{7} + 2 \, {\left (256 \, d^{6} e - {\left (489 \, d^{5} e^{2} + 4 \, {\left (96 \, d^{4} e^{3} - {\left (75 \, d^{3} e^{4} + 2 \, {\left (32 \, d^{2} e^{5} - {\left (8 \, x e^{7} + 9 \, d e^{6}\right )} x\right )} x\right )} x\right )} x\right )} x\right )} x\right )} x\right )} \sqrt {-x^{2} e^{2} + d^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)*(-e^2*x^2+d^2)^(7/2),x, algorithm="giac")

[Out]

35/128*d^9*arcsin(x*e/d)*e^(-1)*sgn(d) - 1/1152*(128*d^8*e^(-1) - (837*d^7 + 2*(256*d^6*e - (489*d^5*e^2 + 4*(
96*d^4*e^3 - (75*d^3*e^4 + 2*(32*d^2*e^5 - (8*x*e^7 + 9*d*e^6)*x)*x)*x)*x)*x)*x)*x)*sqrt(-x^2*e^2 + d^2)

________________________________________________________________________________________

Mupad [B]
time = 0.85, size = 67, normalized size = 0.45 \begin {gather*} \frac {d\,x\,{\left (d^2-e^2\,x^2\right )}^{7/2}\,{{}}_2{\mathrm {F}}_1\left (-\frac {7}{2},\frac {1}{2};\ \frac {3}{2};\ \frac {e^2\,x^2}{d^2}\right )}{{\left (1-\frac {e^2\,x^2}{d^2}\right )}^{7/2}}-\frac {{\left (d^2-e^2\,x^2\right )}^{9/2}}{9\,e} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d^2 - e^2*x^2)^(7/2)*(d + e*x),x)

[Out]

(d*x*(d^2 - e^2*x^2)^(7/2)*hypergeom([-7/2, 1/2], 3/2, (e^2*x^2)/d^2))/(1 - (e^2*x^2)/d^2)^(7/2) - (d^2 - e^2*
x^2)^(9/2)/(9*e)

________________________________________________________________________________________